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Abstract Hazard and risk assessment of landslides with potential-
ly long run-out is becoming more and more important. Numerical
tools exploiting different constitutive models, initial data and
numerical solution techniques are important for making the ex-
pert’s assessment more objective, even though they cannot substi-
tute for the expert’s understanding of the site-specific conditions
and the involved processes. This paper presents a depth-integrated
model accounting for pore water pressure dissipation and
applications both to real events and problems for which
analytical solutions exist. The main ingredients are: (i) The
mathematical model, which includes pore pressure dissipation
as an additional equation. This makes possible to model
flowslide problems with a high mobility at the beginning, the
landslide mass coming to rest once pore water pressures dissipate.
(ii) The rheological models describing basal friction: Bingham,
frictional, Voellmy and cohesive-frictional viscous models. (iii)
We have implemented simple erosion laws, providing a com-
parison between the approaches of Egashira, Hungr and Blanc. (iv)
We propose a Lagrangian SPH model to discretize the equations,
including pore water pressure information associated to the moving
SPH nodes.

Keywords Rock-debris avalanches - Run-out - Numerical
modelling - Rheological modelling - Depth-integrated models

Introduction

The run-out stage of fast-moving landslides (e.g. debris flows,
debris and rock avalanches, flowslides, mudflows) and the prob-
lems encountered when trying to model this type of phenomenon
complicate hazard zonation in many mountainous areas. These
very rapid to extremely rapid phenomena are characterized by
flow-like motion of materials with very varied and mutable prop-
erties. Abundance of coarse and fine particles, as well as water
saturation may vary widely among the different types of move-
ment, and they can control the mechanism of transport and
material entrainment, the landslide dynamics, the occurrence of
surges, and the final deposit characteristics. The state of effective
stress, which controls slope deformation, stability and the eventual
rapid evolution varies in time because of changes in the applied
stresses (e.g. by earthquakes external loading, water impounding),
pore pressures (e.g. by groundwater table recharge), material
properties (e.g. weathering, water content, temperature), and ge-
ometry (e.g. erosion, excavation).

In order to accomplish a Quantitative Risk Analysis (QRA) for
long-run-out landslides, different models with different accuracies
are currently used (Fell et al. 2008). While some of them are still at
the research stage, others have been thoroughly tested and used, as
in the case of depth-integrated models. This paper focuses on
rational models of continuum type because they can be applied
to a large variety of problems. We do not consider here the discrete
element models, because so far they can be applied prevalently to

dry rock avalanches with limitations presently linked to the max-
imum number of particles that can reasonably be simulated.
Continuum models are formulated mathematically as a set of
coupled non-linear partial differential equations. The traditional
approach for numerically solving these equations is by means of
discretization in both time and on a spatial grid. A wide variety of
such models have been developed over the past decades, and they
have had impressive success in modelling controlled laboratory
experiments with granular materials and—arguably to a lesser
degree—natural gravity mass flows (mainly because the complex
material behavior is not adequately captured in the mathematical
models). However, these simulations usually start only after fail-
ure. In fact, numerical techniques based on fixed or moving
meshes are poorly suited for simulating processes like formation
of shear bands and break-up (even though they can be coerced to
do so). Meshless methods, such as the Material Point Method
(MPM) or Smoothed Particle Hydrodynamics (SPH), offer a more
natural way of modelling both the initiation and the propagation
stages of landslides in a consistent manner. We will concentrate on
SPH techniques even though other methods exist. As a conse-
quence, this contribution does not aim to be a comprehensive
review of the existing models and approaches presented in the
vast literature regarding this specific subject, but some pointers to
alternative approaches are given in “A brief state-of-the-art of run-
out models” in order to set the presented model into its context.

A brief state-of-the-art of run-out models
In general, one can broadly classify the different methods for
modelling the run-out of fast-moving landslides (sometimes
termed flow-like landslides) as either empirical or rational.
Models from the former group are used to estimate travel dis-
tances rather than to provide quantitative values of the most
important variables (e.g. velocity, thickness, movement direction).
They may be based on geometrical relationships between the slope
and the landslide deposits (Lied and Bakkehei 1980; Hungr and
Evans 1988; Evans and Hungr 1993; Corominas 1996; Iverson et al.
1998; Hunter and Fell 2003; Hungr et al. 2005; Crosta et al. 2003) or
on volume change methods (Cannon 1993; Fannin and Wise 2001).
In general, these relationships are established starting from a
series of field observations of past events, which should be well
differentiated and classified on the basis of different controlling
factors (e.g. lithology, presence of water, ice or snow, degree of
topographic confinement, geometry of the slope profile, erosion
and bulking up).

On the other hand, rational methods are based on the use of
mathematical models of different degrees of complexity and can
be classified as follows:

(a) Discrete models. They are used where the granularity of the
moving mass is important. The simplest case is that of a block
falling along a slope, with a geometry that can be modelled
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with precision or approximated. The model checks for im-
pacts with the topographic surface applying a suitable impact
model (e.g. Agliardi and Crosta 2003).

On the other end of the spectrum, discrete elements have
been used to simulate rock avalanches. The avalanche is
approximated by a set of particles of simple geometrical
forms (disks/cylinders, spheres) with ad hoc laws describing
the contact forces. The number of material parameters is
rather small (friction, sometimes an initial cohesion, and
elastic contact properties). In many cases, it is not feasible
to reproduce all the blocks of the avalanche, which is there-
fore approximated with a smaller number of blocks (as the
contact forces are size-dependent, one needs to calibrate the
model differently, however). The spheres (3D) or disks (2D)
can be combined to form more complex shapes, and given
granulometries can be generated. One main advantage of
these methods is their ability to reproduce effects far beyond
the reach of continuum models (Taboada and Estrada 2009),
such as inverse segregation (Calvetti et al. 2000) or grain
breakage.

Discrete element models are suitable for the simulation of

rock avalanches, but for the time being we do not recom-
mend using them in other situations (e.g. flowslides, lahars,
mudflows) because the rheology of some (flowing) materials
is not adequately rendered by colliding particles only. While
inclusion of the fluid-grain coupling is possible (by CFD and
DEM codes) in principle, the computational costs are still
prohibitive.
Continuum models. They are based on continuum mechanics,
and can include coupling of the mechanical, hydraulic and
thermo-mechanical behaviour. The following subgroups may
be distinguished:

(b.1) 3D models based on mixture theory. The most complex
model category involves all phases that can be present
in the flowing material, i.e. solid particles, fluid and gas.
The relative displacements of the phases can be large,
so that this group of models can be applied to the most
general case. However, due to the great number of
unknowns and equations, these models have not been
used except when mixture effects are of paramount
importance, which may be the case for mudflows and
some rock-debris avalanches. As the geometry and
the physics are rather complex, no analytical solu-
tions exist and it is necessary to solve the equations
using a suitable numerical model, such as finite
elements or SPH. These models are very expensive
in terms of computing time, but have to be used in
situations where 3D effects are important, as in the
case of impulse waves generated by landslides
(Quecedo et al. 2004) or impact of the flowing
material on structures and buildings. 3D models,
are, in our opinion, the basis of a future generation
of models describing all existing fluid and solid
phases and their interactions. The mathematical
formulation is already available (Pitman and Le
2005; Pudasaini and Hutter 2007; Zienkiewicz and
Shiomi 1984). However, much effort is still needed
in developing efficient computer codes.
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(b.2) Velocity-pressure models (Biot-Zienkiewicz). In many
situations, the movement of pore fluids relative to
the soil skeleton can be assumed to be small, and
the model can be cast in terms of the velocity of
the solid particles and the pore pressures of the
interstitial fluids. This is the classical approach
used in geotechnical engineering. Biot’s approach
(1941, 1955) for linear elastic materials was extended
to non-linear materials and large deformation prob-
lems by Zienkiewicz and co-workers (1980;
Zienkiewicz and Shiomi 1984; Zienkiewicz et al.
1990a, b, 2000), Lewis and Schrefler (1998),
Coussy (1995) and de Boer (2000). Coupled formu-
lations are now widely used in geotechnics to de-
scribe the behaviour of foundations and
geostructures, failure of earth dams, slope failures
and landslide triggering mechanisms. Again, the
resulting model is 3D, and the computational effort
to solve it is large. Material Point Method (MPM),
Smoothed Particle Hydrodynamics (SPH), and
Arbitrary Lagrangian-Eulerian (ALE) methods, such
as demonstrated by Crosta et al. (2008), can be
used. Their field of application is presently restrict-
ed to slides with short to medium run-out because
of the required computational effort, but they
have the advantage that pore pressures can be
fully described.

The main interest of velocity pressure models is
to characterize the triggering mechanism, provid-
ing initial conditions (landslide mobilized mass
and basal pore pressures) which can be used in
the propagation analysis

(b.3) Depth-integrated models. Because of the geometry of
the majority of fast-propagating landslides (i.e. low
depth to length ratio, implying a small vertical velocity
component; particles smaller than flow depth), it is
possible to use a depth integration approximation.
The equations reduce from 3D to 2D, as all variables
depend only on x and y, the information on z-depen-
dence being lost in the integration procedure. This
method has been classically used in hydraulics and
coastal engineering (e.g. flow in channels, long waves,
tides). In the context of gravity mass flows, they were
introduced by Eglit, Grigorian and co-workers in the
1960s (Briukhanov et al. 1967). Since then, especially
after Savage and Hutter (1989, 1991), they have been
widely used by engineers and earth scientists. The
method allows to include information on the basal pore
pressure, as done by Iverson and Denlinger 2001 and
Pastor et al. (2009a), levees deposition and entrainment
(Mangeney et al. 2007a, b; Johnson et al. 2012; Iverson
2012) and can be extended to two-phase models
(Pitman and Le 2005; Pudasaini 2012; Pelanti et al.
2008). The pressures and forces on structures obtained
in depth-integrated models are not fully correct, be-
cause of limited information on vertical profiles of
velocities, For more reliable results, it is necessary
to couple the 2D depth-integrated models with a
local fully 3D model, where: the depth-integrated



model is used to simulate the entire flow to pro-
vide appropriate initial conditions for the 3D sim-
ulation in the proximity of the obstacle.

Concerning segregation, the problem has been
studied and continuum models have been formu-
lated by several researchers during the past years,
such as Vallance and Savage (2000), Trujillo and
Herrmann (2003), Gray and Thornton (2005), Gray and
Ancey (2011) and Johnson et al. (2012). In the case of grain
breaking, Iverson et al. (2010) have suggested that it can
generate pore pressures during landslide propagation.
They studied the behaviour of a loamy sand presenting
aggregates in a shear ring apparatus, concluding that the
breaking of aggregates caused a tendency to compact
and, hence, increase of pore pressures. Constitutive and
numerical analysis of crushing has been studied by
Daouadji and Hicher (2010), Hu et al. (2012), Kikumoto
et al. (2009), and Russell et al. (2009).

Depth-integrated models provide an excellent com-
promise between computer time and accuracy. They have
been used to describe rock avalanches, lahars, mudflows,
debris flows, flowslides and snow avalanches (see for
example McDougall and Hungr 2004; Sosio et al. 2011,
2012).

Depth-integrated models can be simplified, as in the
case of the so-called infinite landslide approaches.
Indeed, the block analysis performed in many cases
consists of a succession of infinite landslides evolving

(b.4)

over a variable topography, where pore pressure dissi-
pation can be included (e.g. Hutchinson 1986). Block
models have been improved in order to consider the
kinematics of several blocks interacting with each oth-
er, including thermo-dynamical effects (Pinyol and
Alonso 2010; Alonso and Pinyol 2010).

The interest of the infinite landslide model comes
from the fact that many of the basal friction laws are
derived from general 3D rheological models in a con-
sistent manner. The method consists of obtaining a
velocity profile from which both the basal friction and
the averaged velocity are obtained. Then, it is possible
to relate both terms, obtaining the friction as a function
of the depth-averaged velocity.

Behaviour of fluidized soils: alternatives for rheological modelling

As mentioned above, through depth integration we lose informa-
tion about the flow structure along the slope-perpendicular direc-
tion, which is needed to obtain both the basal friction and the
depth-integrated stress tensor. A widely used solution assumes
that the flow at a given point and time, with known depth and
depth-averaged velocities, has the same vertical structure as a
uniform, steady-state flow. In the case of flow-like landslides this
model is often referred to as the infinite landslide, as it is assumed
to have constant depth and to move at constant velocity along a
constant slope. This infinite landslide model is used to obtain
approximate values for crucial quantities in our depth-integrated
model. We will present next some rheological models frequently
found in landslide propagation modelling.

Bingham fluid

The Bingham fluid is perhaps the simplest example of a rheolog-
ical relation that exhibits transition between solid and fluid states.
As long as the shear stress does not exceed a threshold 7y specific
to the material, the latter behaves as a solid. Where the threshold is
exceeded, the material flows like a Newtonian fluid. In the simple
case of plane shear, the rheological relation is formulated in terms
of the shear rate and the shear stress 7 as

|T|-Ty

¥ = sgn(7) O(|7|-7v) (1)

where the Heaviside function ©(x)=1 if x>0 and o otherwise,
v(x,t) is the local flow velocity and y is the (Bingham) viscosity.
In the infinite-slope approximation, the problem of a uniform
layer of (sufficiently large) depth & flowing on a plane inclined at
an angle 6 has the following stationary solution:

z\? - )

W=\t g) [ oSz <k (2)
Vp, hs < z <h,

with b, =20 the depth of the unsheared, quasi-solid top

layer (“plug layer”) and h,=h—h, the shear layer depth. The
velocity of the plug layer is given by

, 7pghsin(-)—7yh _17gh LT : 3)
P 24 fT 2 TB 3

Tp=pghsinf is the bed shear stress. In the case of Bingham
fluids, there exists an additional difficulty, because it is not possi-
ble to obtain directly in a simple manner the shear stress at the
bottom as a function of the averaged velocity. In fact, the expres-
sion relating the averaged velocity to the basal friction for the
infinite landslide problem is

7:1’1(1_1) (2+T_Y) (4)
6[1 TB TB

where u is the viscosity, 7y the yield stress, and 75 the shear
stress at the bottom. This expression can be transformed into

Pi(n) ==1mw-3+an+2=o0 (5)

where we have introduced n=hp/h, the ratio between the height
of the constant velocity region or plug to the total height of the
flow, and the non-dimensional number a defined as

It is thus necessary to obtain the root of a third-order polyno-
mial. To decrease the computational load, several simplified solu-
tions have been proposed. Pastor et al. (2004) introduced a simple
method based on obtaining the second order polynomial, which
represents the best approximation to the third-order polynomial
which is given by

3 57
Pz(n) = ;7/2_<

65
16

32

+a)n+ ?)

Knowing the non-dimensional number a, the root is obtained
immediately.
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Frictional fluid

One simple yet effective model is the frictional fluid, especially in
the case of coupled behaviour between soil skeleton and pore fluid,
but without further additional data it does not allow to obtain the
velocity distribution. This is why depth-integrated models using
pure frictional models cannot include information concerning
depth-integrated stresses & * Concerning the basal friction, it is

usually approximated as

Ty = —avtanqﬁi (8)

g

where o, is the normal stress acting on the bottom. Sometimes,
when there is high mobility of granular particles and drag forces
due to the contact with the air are important, it is convenient to
introduce the extra term proposed by Voellmy (1955), which in-

cludes the correction term % , where ¢ is the Voellmy turbulence

parameter. Voellmy’s model was initially developed for snow ava-
lanches, and later, Kérner (1976) proposed to extend its applica-
tion range to rock avalanches. Hungr and Evans (1996) provide
interesting information regarding modelling of rock avalanches
with Voellmy's model, finding friction coefficients ranging from
0.03 to 0.24, and turbulence coefficients from 100 to 1,000 m/s>.

In case the fluidized soil flows over a basal surface made of a
different material, if the friction angle between the two materials ¢
is smaller than the friction angle of the fluidized soil, the basal
shear stress is given by:

7y = —pygh tan ¢ V- (9)
5

where the basal friction angle ¢, is

¢, = min(d, ¢) (10)
This simplified model can implement the effect of pore pressure
at the basal surface. In this case, the basal shear stress will be:

Th = —<U,v tan ‘f’b—PZ/)ﬁ
v

We can see that the effect of pore pressure is similar to
decreasing the friction angle. This is the basis of the model
proposed by Hutchinson (1986) and developed further by
Hungr (1995).

(11)

Cohesive-frictional fluids
For the case of a simple shear flow, the cohesive-frictional 3D
model proposed by Pastor et al. (2009b) reduces to

Oy = Oy = 033 = —P
o\
Oy = 03 =S+ Hep <6TC3) (12)
where
s=ccosp+p sine. (13)

A particular case of interest is the Herschel-Bulkley fluid (¢=o,
c=Ty m>0), of which the Bingham fluid is a special case (m=1).
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For cohesionless granular materials, we will use c=0, m=2. The
basal friction term becomes (Pastor et al. 2009b)

2
14

, 2
Ty = p;ghcosﬁtantpﬁ»fycpﬁ

as it is also obtained for a Criminale-Ericksen-Filbey fluid in the
case of plane shear flow (Norem et al. 1987, 1989) and of similar
structure as Voellmy’s:

Ty = {pljgh cosftan p + pg%}

where ¢ is a material parameter. If we compare both expressions,
we can see that both incorporate a quadratic term depending on
the averaged velocity.

Above, we have defined for convenience pf =p,— (3,0, where
pa=(1—n)p, s and the pore pressure in excess to the hydrostatic
pressure is written as 4Ap,,=0,pw pw is the density of water, p; the
intrinsic density of the particles, n the void ratio, and p,; the
intrinsic density of the debris flow. Initial distribution of pore
pressure and its value at the basal surface are important issues.
In our depth-integrated model, we assume that the pore pressure
at the basal surface is a fraction 3, of the required to induce
liquefaction.

Basal erosion

Basal erosion plays a fundamental role in many landslides. While
there exists today a number of empirical formulas providing an
estimation of erosion for depth-integrated models (Hungr 1995;
Chen et al. 2006; Iverson 2012), there is a lack of sound theories
able to relate the properties of the sliding mass and the hydro-
mechanical characteristics of the basal surface in a consistent way.

A consistent way of modelling the process has been proposed
by Crosta et al. (2008) and the results obtained with an ALE model
able to reproduce large displacements of a mass are depicted in
Fig. 1. This approach allows both 2D and 3D simulations, with an
increase in computational cost by roughly two orders of magni-
tude over 1D or 2D depth-averaged models. Such calculations will
become feasible for a wide range of problems in the foreseeable
future, but at present the majority of problems will have to be
tackled with depth-averaged models.

Depth-integrated codes typically implement simple erosion
laws that lack the consistency of the aforementioned approaches.
For instance, we can mention: Hungr’s erosion law (Hungr and
Evans 2004), the modified erosion law (Egashira 1993, see also
Egashira et al. 2001), the path-controlled erosion (Chen et al.
2006) and the erosion law proposed by Blanc (2008). Heuristic
erosion laws cannot provide accurate results but may be accept-
able for many simple problems.

1. It is useful to distinguish between erosion-limited (or supply-
limited) and entrainment-limited (or transport-limited or sup-
ply-unlimited) flows (Carson and Kirkby 1972; Gauer and Issler
2004; Jakob 2005; Hungr et al. 2005)



a= 3.2
H,= 06 L,= 0.188
6 = 30°

m————

Fig. 1 Results of the numerical models (Crosta et al. 2008) for the 2D collapse of a granular step including the presence of an erodible basal layer (light grey). The layer
thickness and internal friction angle have been varied. The time interval between each profile is 0.1 s. The interface between static and moving material is also represented
for each instantaneous profile. Low shear strength in the basal layer (left panels) leads to a completely different behaviour of the interface. Deposition is directly
simulated without any imposed rule along the interface and the progressive increase of the static sector is observed until the mass comes to rest

In the case of landslides of entrainment-limited type, one expects
these models to give erroneous entrainment rates that may substan-
tially affect the run-out distance and deposit distribution. In these
cases, we recommend using an entrainment law that is consistent
with the flow dynamics. An example is the approach proposed by
Issler and Jéhannesson (2011) who determine the dynamically con-
sistent erosion rate of a quasi-stationary flow of Bingham fluid over a
brittle bed material without adjustable parameters. Other notable
approaches that take into account the acceleration of the eroded
material focus on granular materials (Mangeney et al. 2007b) and the
effects of pore pressure (Iverson 2012).

In Hungr’s erosion law (Hungr 1995), the erosion rate increases
in proportion to the flow depth, dm/ds=E ph, where m is the mass
per unit footprint area (units kg m™?), s the distance along the flow
path, h the flow depth, and E (units m™) is a displacement erosion
rate, the so-called (spatial) growth rate. This parameter represents
the bed-normal depth eroded per unit flow depth and unit longi-
tudinal displacement. It is different from the time-dependent
erosion rate e (units m s '), and is assumed independent of the
flow velocity. For example, if E is constant and takes the value

Fig. 2 Sketch depicting the main variables used in Egashira’s erosion law

o0.01m", the flowing volume increases by 1 % as it travels 1 m. The
erosion rate e and the growth rate, E, are related by

e = Ehv, (15)
where v is the depth-averaged flow velocity (Hungr 1995), and E is
an input parameter whose value has to be selected by the user.
Hungr’s erosion law results in exponential growth of the volume
flow with displacement. Although this law is empirical, it has a
physical basis in that the stress conditions leading to bed failure
and entrainment are related to the total bed-normal stress and
thus to the flow depth. Egashira’s law is based on flume tests as
well as numerical and dimensional analyses. Egashira assumes that
the bed slope always adjusts itself to its equilibrium value in case
of debris flows travelling over an erodible bed. No consideration is
given to pore pressures, even though they can be of paramount
importance (this limitation is also inherent to Hungr’s model). A
more consistent modelling approach of both the flowing mass and
the basal materials has been recently proposed by Iverson (2012).
Models such as that proposed by Crosta et al. (2009) circumvent
the problem in an elegant way considering pore pressure changes
associated to volumetric strain and water seepage into the erodible
and flowing materials..

Referring to Fig. 2, the mass conservation law can be applied to
the yield of eroded material:

e,As = e, vAt = c,.vAh (17)

From Eq. (2), in the next step, one obtains

e, Ah

Egashira derived the erosion law, substituting the term

6—0, = arctan <%—f‘) in the last equation:
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t=0.40s

hy
m SPH .
‘ h(m) \ A Theor.
6

Fig. 3 Dam break over a wet bed \
o, 4
e, = c.vtan(0-6,) (19)
2
h
where x(m)
. . 0
c« is the bed sediment concentration by volume (of the non- -10 5 0 5 10
moving layer)
# s the bed slope b 10,00
0, is the equilibrium bed slope, and all the other quantities have £ =040 s
been defined previously. )
The equilibrium bed slope 0, is the angle for which the shear : SPH
strength of the bed surface equals the bed shear stress exerted by a m/ / Theor
flow. It is assumed that the bed is a cohesionless frictional material v (m/s) 5.00
and that the debris flow is in dynamic equilibrium. Then, one
obtains
ee =tan™' {% tan ¢}
o—p)c+p X (m)
9 s 9% 98 0,00
where: -10 5 0 5 10
o is the mass density of the sediment particles Fig. 5 Wet dam break problem. a Comparison between computed and theoretical
p  the mass density of water elevation profiles at time 0.4 s. b Comparison between computed and theoretical
¢ the sediment concentration of the debris flow by volume, and velocity profiles at time 0.4 5
¢ the internal bed friction angle, approximated by the basal
friction angle ;. The assumptions made in determining 6, can, Experimentally, Takahashi et al. (1992) showed that the sedi-
however, be easily modified. ment concentration of the debris flow (c) does not exceed the

value 0.9 c. Therefore, the following condition has to be verified
at every timestep:

t=00s ¢<0.9¢c

A notable feature of Egashira’s model is that it only uses
parameters that can either be measured (0, ¢, ¢*, pp, py) or
are obtained in the course of the calculation (c, v, 6,).

Implementation of Egashira’s erosion law in the 2D SPH
depth-integrated model revealed, however, that the erosion

SPH Analytical

Fig. 4 Computed (left) versus analytical (right) profiles of water depth at 0.0, 0.2
and 0.4 s Fig. 6 The frictional dam break problem on an inclined plane
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Broken Dam Fi=25°Theta=30° t=10 s
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Fig. 7 Dam break problem: a t=105. b t=205s. c =305

rate has to be multiplied by an empirical factor, K, in order
to yield realistic results:
e, = Kc.vtan(6-6,). (21)

Blanc’s (2008) calibration studies yielded values of K of the
order of 1077, which should be interpreted as indicating that
Egashira’s basic assumption of proportionality between e, and 6
—0, fails or that the proposed method for determining the equi-
librium slope is not applicable in the case studies, or that the
model lacks a consistency constraint from the dynamics of en-
trainment as opposed to the quasi-static, geotechnical consider-
ation implicit in Eq. (18).

Blanc (2008) proposed a new erosion law combining Egashira’s
and Hungr’s laws, in the form

e, = K x v x h x (tanf)*?

(22)
where

K is again an empirical parameter.

This type of equation allows calculating erosion rates by taking
into account the slope, flow velocity and flow depth. The proposed
equation should be tested by laboratory experiments and validated
through case studies. The exponent 2.5 is purely empirical and
results from the analysis of a series of experimental data. This law
has been introduced in order to represent the variation of the
erosion processes taking place during initiation and propagation
of the flow and ceasing in the deposition area.

Hungr, Egashira and Blanc laws will be compared later on, in
“Influence of topography and erosion law: Tsing Shan debris flow”
devoted to Tsing Shan debris flow, where information regarding
the erosion that occurred is available.

Numerical model: the SPH approximation

To analyze the propagation of a fast landslide over a complex
terrain, the governing partial differential equations have to be
discretized for numerical solution in an Eulerian or Lagrangian
scheme. The Eulerian schemes are based on a structured (finite
differences) or unstructured grid (finite elements and finite vol-
umes) fixed in the space domain and within which the material
flows from one cell to another. The main problem lays in the need
of a very fine computational mesh for both the terrain and the
flow. The Lagrangian methods let the discretization points move
along with the flow, allowing the separation of both meshes, with
an important economy of computational effort.

Adaptive mesh refinement techniques for fluid problems can be
applied to Eulerian methods, as proposed first by Peraire et al.
(1987). Since then, adaptivity has been applied to a great variety of
problems, including geophysical flows.

However, if we implement the Lagrangian method by means of
discretization on a moving mesh, the mesh will rapidly be
distorted so severely that frequent remeshing becomes necessary,
with a concomitant loss of accuracy and increased computational
cost. As an alternative, meshless methods do not rely on meshes
for discretization avoiding distortion problems in an elegant way.
In this work, we used a meshless method referred to as smoothed
particle hydrodynamics (SPH) where information is linked to
moving nodes. Adaptivity techniques have also been proposed
for meshless methods such as SPH, improving their efficiency very
much (Feldman and Bonet 2007).

SPH was introduced independently by Lucy (1977) and Gingold
and Monaghan (1977) for astrophysical modelling but it is well
suited for hydrodynamics, and a variety of other problems (e.g.
Gingold and Monaghan 1982; Monaghan et al. 1999; Bonet and
Kulasegaram 2000; Monaghan et al. 2003). SPH has also been
applied to model the propagation of catastrophic landslides
(Bonet and Rodriguez Paz 2005; McDougall 2006; McDougall
and Hungr 2004) but no hydro-mechanical coupling between the
solid skeleton and the pore fluid was incorporated in such exam-
ples (Pastor et al. 2009a).
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Fig. 8 General view of the 2000 Tsing Shan debris flow (left) (King 2001a, b); detail of the bifurcation point (right)

To derive a quasi-Lagrangian formulation of the depth-integrat-
ed equations, we first introduce a “quasi-material derivative” as:

d 0
—=—4Vi— j= 23
i ot +; ox; j=12 (23)

where v; is the averaged velocity along X; axis.
From this, we obtain the “quasi-Lagrangian” form of the bal-
ance of mass as a depth-integrated equation:

dh  o7;
dr + 67, =er (24)

where ey, is the erosion rate [LT '] and A is the flow depth.
The balance of momentum equation is
d 0 /1
e
dt 8xi (

hz) — 10 (haz.) + bih + % |NB}t?—€RVi (25)

; 3 pax]‘

where we have introduced the decomposition
ojj = —1751] + 0’;;-

The term ¢, is the ith component of the normal stress acting on
the basal surface, and |N?| is

Z-heighﬂ

1.9499
1.7332
1.5166

- 1.2999

0.64996
0.43331
0.21665

0

Fig. 9 Tsing Shan debris flow: model predictions vs. field observations with a DTM
cell size of 5 mx5 m
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where Z is the elevation of the basal surface.
We include the effect of centripetal accelerations by inte-
grating the balance of momentum equation along depth, and

assuming a constant vertical acceleration given by v'/R
where v is the modulus of the averaged velocity, and R the
main radius of curvature in the direction of the flow. This
simple approach has been shown by the authors (Quecedo
and Pastor 2003; Pastor et al. 2008) to provide similar results
than those obtained with more consistent formulations using
natural coordinate systems (Gray et al. 1999; Savage and

Hutter 1989, 1991)

An SPH method for depth-integrated equations
To solve the depth-integrated equations we introduce a set of
nodes {xx} with K=1, .., N and the nodal variables:

h;  landslide depth at node I

v;  Depth-averaged 2D velocity

tlb* Surface force vector at the flow base

o; Depth-averaged modified stress
tensor

P,;  Pore pressure at the basal surface

If the 2D area associated to node I is €2;, we will introduce, for
convenience, a fictitious mass m; moving with this node, m;=;h;
and an averaged pressure term p , , given by p; = %b3hf where b,
is the component of the gravity acceleration along X;.

It is important to note that m; has no physical meaning, as
when node I moves, the material contained in a column of base
€); has entered it or will leave it as the column moves with an
averaged velocity, which is not the same for all particles in it.

A key ingredient in the meshless discretization of SPH schemes
is the notion of a kernel function with compact support, W(x, x')
that describes how the values of the flow variables at a given point
(not generally a node) depend on the values of the flow variables at
the nearest nodes x;. For example, the flow height at a point x; (not
a node point in general) can be interpolated from the flow height
at the nearest nodes x; using the following expression:
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Fig. 10 Tsing Shan debris flow: model predictions at different times with a DTM cell size of 5 mx5 m

h = (h(x)) = > Wy => mwy (27)
7 7

Here, the notation Wy is used for W(x;, x;)=W(x;—x;). This
formulation allows expressing spatial derivatives of the fields
through gradients of the kernel function with respect to the node
locations. There is some freedom in choosing the kernel function
W and in expressing the action of the gradient operator. We will
show those obtained with the so-called third symmetrized forms:
gh[ my
—=h —vygrad W 28
it Iz]: p, v erad W, (28)
where we have introduced vy=v;—v;. The discretized balance of
linear momentum equation is:

d_ P Py
— — — L4 27 w
it Vi E] my (h; + h? grad Wy
iE 'm 9, 91 dw x NB|¢B
P ! (h§ hz})gra p+b ph ‘ ’tI (29)

Finally, the SPH discretized form of the basal pore pressure P,;
dissipation is:

(30)

This equation comes from the discretization of a consolidation
equation along depth. The pore water pressure profiles are

described by a simple shape function: a quarter cosine profile
fulfilling the boundary conditions of zero pore pressure at the
surface and zero flux at the bottom. This approach has been used
by researchers in the past within the framework of finite element
or volumes techniques (Iverson and Denlinger 2001; Pastor et al.
2002, George and Iverson 2011).

Here, the model is simpler, as in Lagrangian formulations
convective terms do not appear. The consolidation equation is
associated to SPH nodes in our case.

So far, we have discretized the equations of balance of mass,
balance of momentum and pore pressure dissipation in space. The
resulting equations are ordinary differential equations in time,
which can be integrated using a scheme like Leap Frog or
Runge-Kutta (second or fourth order).

Examples and applications

The presented depth-integrated SPH model can be used to predict
some important features of run-out. In the following, some select-
ed applications to well-described events are presented with param-
eters selected from back analysis.

First of all, it is important to show how the model is able to
reproduce cases for which an analytical solution exists. We have
selected the problem of the breaking of a dam over horizontal
terrain that is already flooded (wet). This case shows how the
proposed model is able to capture shocks, as the solution consists
of a rarefaction wave and a shock wave.

A second test will consist on comparing its predictions
against a laboratory test. Here, we will use data from a
granular avalanche.
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Fig. 11 Tsing Shan debris flow: SPH modelling results obtained by applying a 10 mx10 m DTM cell size. Unrealistic predictions can be compared to those in Figs. 10 and
with field observations (Fig. 9)

Finally, we will present some cases for which detailed informa- observations. Field observations have been either obtained from
tion has been provided, comparing model predictions against field the literature or direct observations.

Comparison of volume increase rates
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30 The 1990 Tsing Shan debris flow I
~— SPH simulation with the Egashira law
20 —— SPH simulation with the Hungr law 7
T ~— SPH simulation with the proposed law
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Fig. 12 Comparison of the erosion distribution along the flow path as calculated by different equations for the 1990 Tsing Shan debris flow (after Blanc 2008)
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Fig. 13 Model predictions vs field observations for the 2005 event at Tate's Cairn
(Hong Kong) by adopting a Voellmy rheology

Pore pressure dissipation has only been taken into account for the
Cougar Hill flowslide, because it was reported that soil behaviour
showed liquefaction, and the consolidation properties were
provided.

Wet dam break model
The test consists of an infinite reservoir of constant depth h;, sepa-
rated by a vertical wall from a plane flooded with water of depth hg
(Fig. 3). At time f=o0 the wall is removed instantaneously, and the
reservoir water enters the wet plane. The solution (Marshall and
Méndez 1981; Toro 2001, and Guinot 2003) consists on a rarefaction
wave propagating leftwards, and a shock moving to the right.
Figures 4 and 5 provide a comparison between the analytical
solution and the model predictions. Profiles of water depth are given
at 0, 0.2 and 0.4 s, and show how the shock is accurately captured.

Z-height soil
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Fig. 14 Model results for Tate's Cairn forwards prediction considering a release of the
entire disrupted mass along the slope. Invasion area and final depth are reported

Dambreak problem of a frictional fluid over a slope
In the previous example, we have analyzed the case of a inviscid
fluid. It provides information on how the numerical scheme is able
to model rarefaction and shock waves. We will consider here the
case of a reservoir of a frictional fluid behind a dam on a slope. In
this problem, there exist two additional terms (sources), originated
by the slope and the friction.

We have used the solution which was proposed by Mangeney et
al. 2000. Using the main variables sketched in Fig. 6, the analytical
solution is given by:

h, xX<xp
1
9gcosf

h(t) =

x 1 2
2C, —?—fmt XL SX<XR
2

[¢) XR<X

The results obtained at times 10, 20 and 30 s are plotted below
in Fig. 7a, b, ¢, showing a good general agreement between theory
and computed results.

Influence of topography and erosion law: Tsing Shan debris flow

(a) Model results

The Tsing Shan debris flow occurred in Hong Kong on April 14th,
2000 (King 20013, b) following heavy rains (160 mm) that trig-
gered more than 50 landslides in the area. The terrain was vege-
tated, and consisted of colluvial material and boulders. Two
features characterize this debris flow event: entrainment along
the path causing an increase in volume from 150 to 1,600 m?, and
the sharp bifurcation of the flow (see Fig. 8, King 2001a, b).

The fluidized soil is considered to be a viscoplastic frictional
fluid with a basal friction given by Eq. (13), where we have used
a friction coefficient tan¢p=0.18 and pcr=0.00133 Pa s>

We have not used the coupled formulation in this case, as no
data regarding neither initial distribution of pore pressures nor
consolidation properties were provided in the report. We ac-
knowledge it as a limitation of the analysis done, remarking the
necessity to obtain laboratory data.

For modelling of erosion (see Basal erosion) we have chosen
Hungr’s equation by setting the erosion coefficient to
0.0082m .

The debris flow path computed using a 5 mx5 m DTM cell
size, is depicted in Figs. 9 and 10 and shows the branching and
the deepest deposit (1.8 m) at the end of the lower south branch.
The model predicts a time of propagation close to 120 s and by
considering a run-out of 9oo m along the lowest branch, the
average velocity is close to 30 km/h, but no direct information
is available for model calibration. King (2001a, b) states that the
total volume deposited in the south branch amounts to 500 m*
with an eroded volume of 1,600 m? while the computation
provides values of 525 m® and 1,550 m?, respectively.

(b) Influence of terrain representation
In order to illustrate the effect of the DTM size, we ran a
simulation by keeping all parameters the same but with a
10 m DTM grid spacing.

The results (Fig. 11) show how the model in this new setting
predicts only one branch, instead of the two branches observed
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Fig. 15 Model predictions for Tate’s Cairn: results obtained with a cohesive fluid model (Bingham) for the two initial masses, a 1,200 m* and b 10,000 m”. These should
be compared with results obtained by adopting a Voellmy rheology and reported in Figs. 13 and 14

in reality. We believe that there exist in this case several scales
in the topography, which are captured by DTMs with a resolu-
tion higher than a threshold. In this case, the 10 m DTM was
able to avoid avulsing the debris flow from the channels, but the
details causing divergence were smoothed.

A similar analysis for different case studies of volcanic rock-
debris avalanches has been performed by Sosio et al. (2011)
using ASTER and SRTM topographic data. These authors ob-
served that back analyses performed on different topographic
data result in slightly different deposition area and thickness,
lateral extent, and flow velocities particularly in case of

unconfined path conditions. Therefore, the calibrated parame-
ters will vary with the adopted topographic data resulting in
lower values of the rheological parameters for smaller cell sizes
(i.e. larger roughness).
(c) Influence of the erosion law

The influence of the eroded mass depends on the erosion law
adopted in the analyses. We depict in Fig. 12 the results obtain-
ed with different erosion laws for the Tsing Shan event. In all
the calculations with Hungr’s erosion equation, the volume
increases rapidly in the very last part of the path, which corre-
sponds to the deposition area where no erosion takes place in

Fig. 16 Cougar Hill: Cougar dump 7 failure. Position of SPH nodes at 5, 10, 20 and 30 s
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Fig. 17 Cougar Hill: Cougar dump 7 failure Contours of normalized pore water pressure at different time steps. At t=30 s. all pore pressures are zero

reality (cf. the 1990 and 2000 Tsing Chan debris flow). Thus
while Hungr’s equation is able to predict the final volume well,
it is unable to evaluate correctly the volume and its changes
along the flow path.

The modified Blanc’s erosion law provides better results
because with these equations most of the debris is accumulated
before reaching the deposition area. As a consequence, the
erosion occurs mainly during the initiation and the propaga-
tion phase.

Fig. 18 General view of Fei Tsui Road landslide (Knill and Geotechnical
Engineering Office 2006)

In case of the 1990 Tsing Chan debris flow, the equation
proposed by Blanc (2008) performs best, simulating a greater
increase in volume along the initial 50 % of the flow path, and
then a further increase at a lower rate.

It is important to notice that choosing a constant value of
the erosion constant is a crude approximation, as the areas over
which the avalanche travels may consist of different materials.

A forward prediction exercise: The Tate’s Cairn debris flow

After a debris flow occurred in Tate’s Cairn (Hong Kong), on
August 2005 a detailed analysis of the debris source revealed the
existence of a disrupted slope, from which more severe events
could originate in the future. Starting from the data of the 2005
event (Maunsell Geotechnical Services Ltd. 2007) a simulation has
been performed to predict the consequences of a possible debris
flow involving the whole disrupted mass A 5 mx5 m DTM pro-
vided by the Hong Kong Geotechnical Engineering Office has been
used for the simulations. The source area of the 2005 event was
36 m long and 22 m wide with a maximum depth of approximately
5.5 m. The source material consisted of an upper layer of boulder-
rich colluvium (or young colluvium) made of slightly sandy silty
clay, about 2.9 m thick, and an old colluvium layer made of sandy
clayey silt.

A frictional Voellmy-type rheology was chosen and calibration
resulted in a turbulence constant £=500 m/s* and tan¢=0.3.
Hungr’s erosion model, with an erosion constant of 0.0006 m™,
was used. The results are given in Fig. 13 and compared with field
observations.

Once the past event was modelled, we proceeded to analyze the
characteristics of an event affecting the whole presently distressed
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Table 1 Parameters used to model Fei Tsui landslide

Fei Tsui Landslide

Density 19 kN/m®

No erosion

Erosion factor

Drainage condition Undrained behaviour

Rheological model Frictional fluid

Friction angle (apparent) 26°

area. Figure 14 provides the results of the forward prediction,
assuming that the same material parameters are representative of
fluidized soil behaviour and the same erodible layer thickness will
be available.

It is important to note that the reason of using two different
rheologies comes from the fact that in some cases, different au-
thors have used different rheological laws to models the same
problem. This has happened with Aberfan, where both Bingham
and frictional fluids have been used (Jeyapalan et al. 1983; Pastor et
al. 2004). However, if one deepens in the literature, finds that the
material was loose and metastable, with tendency to liquefy.
Hence, it is more logical to use a frictional model than a
Bingham rheology.

Influence of the rheological model
The choice of a different rheological model to back analyse an
event can still succeed in fitting the final deposit but this choice
will also control the final result and prediction performance of the
model. As a consequence, a correct choice of the model rheology
should be based on the type of phenomenon and field observa-
tions of past events. In the following we demonstrate what occurs
in case of the Tate’s Cairn case study when a Bingham rheology is
used to calibrate against the past event and the obtained calibrated
values are used for a forward run-out prediction.

By calibrating the model with a Bingham fluid rheology, a yield
stress of 2,860 Pa and viscosity coefficient of 44.8 Pa s were found.
The results for the backward and forward predictions are given in
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Fig. 15 where it is possible to observe a much different behaviour of
the two forward predictions with respect to the results reported in
Figs. 13 and 14.

This example stresses the point that fitting a model to a set of
observations is not enough. Given the type of phenomenon, it is
not reasonable to use a Bingham model in this case, but this
rheology is able to provide good results for that particular mass
of soil and the initial volume.

Influence of basal pore water pressure: Cougar Hill flowslide

It has been already stated that the coupling between pore pressures
and the solid skeleton is crucial for many flowslides and should be
included in modelling their propagation. Dawson et al. (1998)
reported three cases of flowslides in a coal mine waste dump in
the Western Canadian Rocky Mountains, selected among some 50
flowslides that occurred between 1972 and 1997. The flowslides
propagated distances up to 3,500 m, with a mean value of 980 m
and with run-out distances exceeding 1,000 m in case of rapid
loading of saturated materials along the distal run-out path.

In the case of the Cougar 7 dump failure in May 1992, approx-
imately 200,000 m? slid off the 100 m high dump. Wet fine-grained
layers were found at the foundation contact, near the crest, and in
the debris. According to Dawson et al., these fine-grained layers
played a crucial role in both the initiation and the propagation
phases. The flowslide is thought to have been triggered by lique-
faction of the fine-grained layers. Laboratory tests gave a density
of 1,900 kg m™3, an effective friction angle ¢p'=37" and a charac-
teristic consolidation time of 68 s, from which a value of ¢,=
1.76 .10 > m®s” ' was derived. The initial pore pressure was assumed
to be 0.89 times the value required to reach full liquefaction,
whereas the value of the effective friction angle was taken directly
from experiments by Dawson et al. (1998) even if a smaller friction
angle could have provided good predictions.

The results of the simulations are given in Figs. 16 and 17,
in terms of the flowslide extent, debris depth and pore
pressures.

The pore pressure distribution follows and controls at the same
time the evolution of the flow, remaining high in the central part of

t=3s

|hesgit sal|

Fig. 19 SPH model results showing the Fei Tsui Road landslide (Hong Kong) propagation at four time steps
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Table 2 Values for the actual debris deposits and model

Landslide (m) Modelling (m) Difference (%)

Maximum width of the debris deposit 90 88.70 —1.44
Maximum horizontal distance 70 82.60 +18.00
Depth on point 2, profile A-A" 9.52 9.16 -3.78
Depth on point 3, profile A-A’ 3.75 3.88 +3.47
Depth on point A, profile A-A’ 542 5.84 +7.75
Depth on point 1, profile A-A" 333 2.75 -17.41
Maximum depth of debris piled against the corner of the church (point P) 6 5.20 +13.3

the flow and rapidly decreasing towards the flow boundary (both
laterally and toward the front). This reasonably reflects the exper-
imental observations.

Short run-out rockslide-avalanche: Fei Tsui Road landslide

The Fei Tsui Road (Knill and Geotechnical Engineering Office
2006), occurred on August 2005 on a 60° slope in weathered
volcanic rock, grading from moderately to completely
decomposed tuff. It involved 14,000 m?® of material with two
groundwater systems, the regional groundwater table and a
perched water table. The causes are described as a combination
of a weak material together with the groundwater recharge follow-
ing a prolonged heavy rainfall. The maximum width of the mobi-
lized mass was 9o m, and the distance travelled 70 m, after which
the landslide piled some 6 m up against a corner of the Baptist
Church building. Figure 18 (Knill and Geotechnical Engineering
2006) shows a general view of the landslide. Because of the high
thickness to length ratio, the applicability of depth-integrated
models to this landslide is questionable.

The landslide has been modelled using a frictional fluid with an
internal friction angle of 26° (Knill and Geotechnical Engineering
2006) representing an apparent friction angle smaller than the
effective friction angle in presence of induced pore pressures.
Taking into account the time of propagation (about 10 s) and the
involved mass, it has been assumed that the time of propagation is
much smaller than the time required for pore pressure dissipation,
inducing a condition of undrained loading. Table 1 summarizes the
parameters used.

Figure 19 depicts the position of the landslide at successive
times (1, 3, 6, and 9 s), and Fig. 20a, b shows comparison of
computed results and measurements both for the run-out and
the vertical profile A-A’, with site measurements and model pre-
dictions at specific points.

We have evaluated the precision of the results by comparing the
values in the model with field measurements. As references, we
have chosen the run-out, the dimensions of the debris deposit and
the thickness of the material deposited at some points of the
profile A-A’, and the corner of the church (point P).

Exposed glacier

m 0 100 200 300 400 500
— ——

Fig. 21 General view of Thurwieser rock avalanche (Sosio et al. 2008) and map with of the source, transport and deposition
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Fig. 22 a Thurwieser avalanche final extension after 81 s: computed results (colorful isolines and deposit height) versus field measurements (black isolines and red
line for the spreading). b Thurwieser avalanche extension after 22 and 40 s with deposit height

The agreement for the depth and the maximum width of the
deposit was excellent, and the result for the run-out was good
enough. However, the maximum distance travelled was
overestimated by 18 %. Table 2 contains the actual values, the
program’s results and the differences expressed as percentages.

Run-out on different materials: Thurwieser rock avalanche
The 2.2x10° m? Thurwieser rock avalanche occurred in the Central
Italian Alps on 18th September 2004 detaching from a steep rock

face, and propagating from 3,500 to 2,300 m of altitude, with a
travel distance of 2.9 km. Sosio et al. (2008) describe all the
phases of this avalanche providing detailed information
concerning the avalanche velocity during the entire evolution
(Fig. 21).

This avalanche presents several modelling difficulties repre-
sented by the initial steep failure and the crossing of terrains of
different materials (e.g. Zebru glacier). The basal friction along the
glacier surface is very small, and erosion of ice and snow is
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possible. This entrained material can melt due to the heat gener-
ated by basal friction, providing extra water, and probably origi-
nating basal pore pressures (Schneider et al. 2011; Sosio et al. 2012).
A simple frictional Voellmy model including turbulence has been
used with erosion described by Hungr’s equation (1995). The
calibrated rheological parameters are: tan ¢=0.39, Voellmy coef-
ficient 1,000 m/s? erosion coefficient 0.00025 m™.

The results are given in Fig. 22, where the avalanche evolution
with time and the computed final extent together with field obser-
vations are plotted.

In this case—a rock avalanche—no pore water pressure anal-
ysis was done. We agree that the problem is quite complex, as rock
fragmentation may generate a tendency to compact, resulting on
an increase of air pore pressure at the beginning. This mechanism
can be balanced by a tendency to dilate because of the shear strain
rate (indeed, in rheometers, the granular materials dilate as strain
rate increases) Later, when the avalanche is crossing the glacier,
because of the friction, melting can result on water entering the
avalanching material. We have not included these effects, and
consider it as a limitation of the model.

Conclusions

Rock avalanches, flowslides, debris flows, lahars and similar events
are very complex phenomena involving a multitude of physical
mechanisms such as break-up and comminution, segregation,
recirculation basal erosion, coupling with pore water, evolution
of fluid properties, and thermal effects. Complete 3D models based
on mixture theory and incorporating sub-models for the phenom-
ena mentioned above are still very expensive from a computation-
al point of view. Depth-integrated models provide a good
combination of simplification and accuracy. A choice of suitable
discretization techniques exists, such as finite differences, finite
elements, finite volumes or more recent meshless methods (e.g.
SPH). All of them provide accurate numerical approximations of
the depth-integrated equations.

The aim of this paper has been to show the potential of depth-
integrated, SPH models incorporating pore pressure dissipation to
simulate the propagation phase of some types of landslides, de-
scribing some of the inaccuracies which can appear in the
discretization.

The SPH approach allows to separate the moving nodes or
particles, which represent the flow without a mesh, from the
topographical mesh, which may be structured (DTM cells) to
simplify computations. In the authors’ experience, the computa-
tional time can be reduced up to 30 times as compared with
unstructured finite element meshes.

The cases which have been considered include (i) problems
having analytical solution (ii) real events.

In the former group, the SPH model used here provides rea-
sonable results both for shock and rarefaction waves which appear
in the case of a dam breaking over a flooded domain, and when a
dam impounding a granular fluid breaks on a sloping terrain.

Concerning the real events which have been analyzed, we have
considered a rock avalanche, two cases of debris flows, a short
run-out landslide and a flowslide where pore pressure dissipation
was important.

Calibration has depended on the quality and the amount of
available data. Depth-integrated models use relatively few material
parameters, which in some cases have to be obtained by back

810 | Landslides 11 * (2014)

analysis (trial and error), while in others, friction angle and con-
solidation properties have been determined by suitable laboratory
tests

Concerning the initial mass, the result obviously depends on it,
and also on initial pore pressures. This information is crucial for
flowslides, but most of the times it is not available, and has to be
assumed. This is the case the case of very loose metastable mate-
rials, where pore pressures generated in the triggering process
largely contribute to failure. Liquefaction is possible also in dry
materials under special circumstances, with air playing the role of
pore fluid (Ferndndez-Merodo et al. 2004; Roche et al. 2008). The
importance of the pore pressure on propagation depends on the
ratio of consolidation and propagation times.

The resolution of the DTM can be determinant in some cases,
such as the Tsing Shan debris flow presented here.

Finally, we have to point out the importance of modelling the
different properties of the terrain over which the landslide prop-
agates, which can affect basal friction angle (as in the case of
Thurwiesser avalanche) and erosion.
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